Answer:
The general solution of the differential equation is:
[tex]y=c_1e^{-6t}+c_2te^{-6t}[/tex]
Step-by-step explanation:
We have a second order homogeneous differential equation [tex]y''+12y'+36 y = 0[/tex]
We need to find the characteristic polynomial
[tex]x^2+12x-36=0[/tex]
Next, we find the roots as follows:
[tex]\mathrm{Solve\:by\:factoring}\\\\\mathrm{Rewrite\:}x^2+12x+36\mathrm{\:as\:}x^2+2x\cdot \:6+6^2\\\\\mathrm{Apply\:Perfect\:Square\:Formula}:\quad \left(a+b\right)^2=a^2+2ab+b^2\\\\\left(x+6\right)^2=0\\\\\mathrm{Solve\:}\:x+6=0:\quad x=-6[/tex]
The roots of characteristic polynomial are [tex]r=-6[/tex] and [tex]s=-6[/tex]
When the roots are real and equal the general solution of the differential equation is:
[tex]y=c_1e^{-6t}+c_2te^{-6t}[/tex]