Answer:
S(r) = 3*π*r^(2)
V(r) = π*r^(3)/2
S(v) = 3*π* (cubic roof (2*V(r)/π)^(2)
Step-by-step explanation:
S(r) = lateral area + (area of base + area of top)
S(r) = 2*π*r*h + 2*π*r^(2) S(r) =2*π*r*r/2 + 2*π*r^(2) = π*r^(2) + 2π*r^(2)
S(r) =3*π*r^(2)
V(r) =π*r^(2)*h since h=r/2 V(r) =π*r^(3)/2
r^(3) = 2*V(r)/π r = cubic roof (2*V(r)/π)
And S(v) = 3*π* (cubic roof (2*V(r)/π)^(2)