Answer:
a) 330951
b) n-1
Step-by-step explanation:
a)
[tex]\bar{X} = 72472,4 \\ x_1 = 7878, x_2 = 6060,x_3 = 9191 , x_4 = 8282, x_5 = ?[/tex]
[tex]\bar{X} = \frac{1}{n} \sum_{i=1}^n x_i \\72472,4 = \frac{1}{5} (7878 + 6060 + 9191 + 8282 + x_5) \\362362 = 31411 + x_5 \\x_5 = 330951[/tex]
b)
Imagine the following situation:
[tex]n = 5 \\ \bar{X} = 25 \\ \frac{1}{5}\cdot (13+a+b+c+d) = 25[/tex]
We realize that we can assign a maximum of 4 values so that the average is 25. That is, when we set
one value, we have n-1 possibilities to assign other values.