Answer: 0.9088
Step-by-step explanation:
Given : [tex]\mu=0.30[/tex]
[tex]\sigma=0.045[/tex]
Let x be a random available that represents the proportion of students that reads below grade level .
Using [tex]z=\dfrac{x-\mu}{\sigma[/tex] , for x= 0.36 , we have
[tex]z=\dfrac{0.36-0.30}{0.045}=1.33333[/tex]
Using standard normal z-value table,
P-value [tex]= P(<z<1.33333)=[/tex]
[tex]P(z<1.33)=0.9087882\approx0.9088[/tex] [Rounded yo the nearest 4 decimal places.]
Hence, the probability that a second sample would be selected with a proportion less than 0.36 = 0.9088