Respuesta :

We're looking for a solution of the form [tex]F(x,y)=C[/tex]. By the chain rule, this solution should have total differential

[tex]\mathrm dF=\dfrac{\partial F}{\partial x}\,\mathrm dx+\dfrac{\partial F}{\partial y}\,\mathrm dy=0[/tex]

and the equation is exact if the mixed second-order partial derivatives of [tex]F[/tex]are equal, i.e. [tex]\frac{\partial^2F}{\partial x\partial y}=\dfrac{\partial^2F}{\partial y\partial x}[/tex].

The given ODE is exact, since

[tex]\dfrac{\partial(2xy^3+\cos x)}{\partial y}=6xy^2[/tex]

[tex]\dfrac{\partial(3x^2y^2-\sin y)}{\partial x}=6xy^2[/tex]

Then

[tex]\dfrac{\partial F}{\partial x}=2xy^3+\cos x\implies F(x,y)=x^2y^3+\sin x+f(y)[/tex]

[tex]\dfrac{\partial F}{\partial y}=3x^2y^2-\sin y=3x^2y^2+\dfrac{\mathrm df}{\mathrm dy}[/tex]

[tex]\dfrac{\mathrm df}{\mathrm dy}=-\sin y\implies f(y)=\cos y+C[/tex]

[tex]\implies x^2y^3+\sin x+\cos y=C[/tex]

With [tex]y(0)=\pi[/tex], we get

[tex]\cos\pi=C\implies C=-1[/tex]

[tex]\implies\boxed{x^2y^3+\sin x+\cos y=-1}[/tex]

ACCESS MORE