Respuesta :

Answer:

The derivative is [tex]y'=24x^2-34x-21[/tex]  

Step-by-step explanation:

Given : Equation [tex]y = (8x+7)(x^2-3x)[/tex]

To find : The derivative and simplify ?

Solution :

[tex]y = (8x+7)(x^2-3x)[/tex]

First we simply the product,

[tex]y = (8x)(x^2)-(8x)(3x)+7(x^2)+7(-3x)[/tex]

[tex]y = 8x^3-24x^2+7x^2-21x[/tex]

[tex]y = 8x^3-17x^2-21x[/tex]

Derivative w.r.t. x,

[tex]\frac{dy}{dx} =\frac{d}{dx}(8x^3-17x^2-21x)[/tex]

[tex]y'=24x^2-34x-21[/tex]

Therefore, The derivative is [tex]y'=24x^2-34x-21[/tex]