Respuesta :

Answer:

[tex]x(t)=\frac{1}{2}e^{-2t}+\frac{1}{2}e^{2t}[/tex]

Step-by-step explanation:

The given differential equation is [tex]x''-4x=0[/tex]

The characteristics equation is given by

[tex]r^2-4=0\\\\r^2=4\\\\r=\pm2[/tex]

Therefore, the solution of the DE is given by

[tex]x(t)=c_1e^{-2t}+c_2e^{2t}[/tex]

On differentiating, we get

[tex]x'(t)=-2c_1e^{-2t}+2c_2e^{2t}[/tex]

Apply the initial conditions

x(0)=1

[tex]1=c_1e^{0}+c_2e^{0}\\\\c_1+c_2=1...(i)[/tex]

Second condition is x'(0)=0

[tex]0=-2c_1e^{0}+2c_2e^{0}\\\\-2c_1+2c_2=0\\\\c_1-c_2=0...(ii)[/tex]

Add (i) and (ii)

[tex]2c_1=1\\\\c_1=\frac{1}{2}[/tex]

Substituting this value in (ii)

[tex]\frac{1}{2}-c_2=0\\\\c_2=\frac{1}{2}[/tex]

Hence, the solution of the DE is

[tex]x(t)=\frac{1}{2}e^{-2t}+\frac{1}{2}e^{2t}[/tex]

ACCESS MORE