Respuesta :
Answer:
For a: The value of [tex]K_c[/tex] for the given reaction is 271.6
For b: The value of [tex]K_p[/tex] for the reaction is 6.32
Explanation:
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] .....(1)
- For [tex]PCl_5[/tex] :
Given mass of [tex]PCl_5[/tex] = 0.105 g
Molar mass of [tex]PCl_5[/tex] = 208.24 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of }PCl_5=\frac{0.105g}{208.24g/mol}=5.04\times 10^{-4}mol[/tex]
- For [tex]PCl_3[/tex] :
Given mass of [tex]PCl_3[/tex] = 0.220 g
Molar mass of [tex]PCl_5[/tex] = 137.33 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of }PCl_3=\frac{0.220g}{137.33g/mol}=1.60\times 10^{-3}mol[/tex]
- For [tex]Cl_2[/tex] :
Given mass of [tex]Cl_2[/tex] = 2.12 g
Molar mass of [tex]Cl_2[/tex] = 71.0 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of }Cl_2=\frac{2.12g}{71.0g/mol}=0.029mol[/tex]
Volume of the flask = 25.0 L
For the given chemical equation:
[tex]PCl_3(g)+Cl_2(g)\rightleftharpoons PCl_5(g)[/tex]
- For a:
The equation used to calculate concentration of a solution is:
[tex]\text{Molarity}=\frac{\text{Moles}}{\text{Volume (in L)}}[/tex]
The expression of [tex]K_c[/tex] for above reaction follows:
[tex]K_c=\frac{PCl_5}{PCl_3\times Cl_2}[/tex]
We are given:
[tex][PCl_5]=\frac{5.04\times 10^{-4}mol}{25L}[/tex]
[tex][PCl_3]=\frac{1.60\times 10^{-3}mol}{25L}[/tex]
[tex][Cl_2]=\frac{0.029mol}{25L}[/tex]
Putting values in above equation, we get:
[tex]K_c=\frac{(\frac{5.04\times 10^{-4}}{25})}{(\frac{1.60\times 10^{-3}}{25})\times (\frac{0.029}{25})}\\\\K_c=271.6[/tex]
Hence, the value of [tex]K_c[/tex] for the given reaction is 271.6
- For b:
Relation of [tex]K_p[/tex] with [tex]K_c[/tex] is given by the formula:
[tex]K_p=K_c(RT)^{\Delta ng}[/tex]
where,
[tex]K_p[/tex] = equilibrium constant in terms of partial pressure = ?
[tex]K_c[/tex] = equilibrium constant in terms of concentration = 271.6
R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]
T = temperature = [tex]250^oC=250+273=523K[/tex]
[tex]\Delta n_g[/tex] = change in number of moles of gas particles = [tex]n_{products}-n_{reactants}=1-2=-1[/tex]
Putting values in above equation, we get:
[tex]K_p=271.6\times (0.0821\times 523)^{-1}\\\\K_p=6.32[/tex]
Hence, the value of [tex]K_p[/tex] for the reaction is 6.32