The two common chlorides of phosphorus, PCl3, and PCl5, both important for the production of the other phosphorus compounds, coexist in equilibrium through the reaction
PCl3(g) + Cl2(g) = PCl5(g)
At 250 ᵒC , an equilibrium mixture in a 25.0 L flask contains 0.105 g PCl5, 0.220 g PCl3 and 2.12 g of Cl2. What are the values of
a) Kc
b) Kp for this reaction at 250 ᵒC ?

Respuesta :

Answer:

For a: The value of [tex]K_c[/tex] for the given reaction is 271.6

For b: The value of [tex]K_p[/tex] for the reaction is 6.32

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]      .....(1)

  • For [tex]PCl_5[/tex]  :

Given mass of [tex]PCl_5[/tex] = 0.105 g

Molar mass of [tex]PCl_5[/tex] = 208.24 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of }PCl_5=\frac{0.105g}{208.24g/mol}=5.04\times 10^{-4}mol[/tex]

  • For [tex]PCl_3[/tex]  :

Given mass of [tex]PCl_3[/tex] = 0.220 g

Molar mass of [tex]PCl_5[/tex] = 137.33 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of }PCl_3=\frac{0.220g}{137.33g/mol}=1.60\times 10^{-3}mol[/tex]

  • For [tex]Cl_2[/tex]  :

Given mass of [tex]Cl_2[/tex] = 2.12 g

Molar mass of [tex]Cl_2[/tex] = 71.0 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of }Cl_2=\frac{2.12g}{71.0g/mol}=0.029mol[/tex]

Volume of the flask = 25.0 L

For the given chemical equation:

[tex]PCl_3(g)+Cl_2(g)\rightleftharpoons PCl_5(g)[/tex]

  • For a:

The equation used to calculate concentration of a solution is:

[tex]\text{Molarity}=\frac{\text{Moles}}{\text{Volume (in L)}}[/tex]

The expression of [tex]K_c[/tex] for above reaction follows:

[tex]K_c=\frac{PCl_5}{PCl_3\times Cl_2}[/tex]

We are given:

[tex][PCl_5]=\frac{5.04\times 10^{-4}mol}{25L}[/tex]

[tex][PCl_3]=\frac{1.60\times 10^{-3}mol}{25L}[/tex]

[tex][Cl_2]=\frac{0.029mol}{25L}[/tex]

Putting values in above equation, we get:

[tex]K_c=\frac{(\frac{5.04\times 10^{-4}}{25})}{(\frac{1.60\times 10^{-3}}{25})\times (\frac{0.029}{25})}\\\\K_c=271.6[/tex]

Hence, the value of [tex]K_c[/tex] for the given reaction is 271.6

  • For b:

Relation of [tex]K_p[/tex] with [tex]K_c[/tex] is given by the formula:

[tex]K_p=K_c(RT)^{\Delta ng}[/tex]

where,

[tex]K_p[/tex] = equilibrium constant in terms of partial pressure = ?

[tex]K_c[/tex] = equilibrium constant in terms of concentration = 271.6

R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]

T = temperature = [tex]250^oC=250+273=523K[/tex]

[tex]\Delta n_g[/tex] = change in number of moles of gas particles = [tex]n_{products}-n_{reactants}=1-2=-1[/tex]

Putting values in above equation, we get:

[tex]K_p=271.6\times (0.0821\times 523)^{-1}\\\\K_p=6.32[/tex]

Hence, the value of [tex]K_p[/tex] for the reaction is 6.32

ACCESS MORE