Illustrates an Atwood's machine. Let the masses of blocks A and B be 7.00 kg and 3.00 kg , respectively, the moment of inertia of the wheel about its axis be 0.220 kg⋅m2, and the radius of the wheel be 0.120 m. There is no slipping between the cord and the surface of the wheel.
A) Find the magnitude of the linear acceleration of block AB) Find the magnitude of linear acceleration of block B.C) Find the magnitude of angular acceleration of the wheel C.D) Find the tension in left side of the cord.E) Find the tension in right side of the cord.

Respuesta :

Answer:  

A) 1.55  

B) 1.55

C) 12.92

D) 34.08

E)  57.82

Explanation:  

The free body diagram attached, R is the radius of the wheel  

Block B is lighter than block A so block A will move upward while A downward with the same acceleration. Since no snipping will occur, the wheel rotates in clockwise direction.  

At the centre of the whee, torque due to B is given by  

[tex]{\tau _2} = - {T_{\rm{B}}}R[/tex]  

Similarly, torque due to A is given by  

[tex]{\tau _1} = {T_{\rm{A}}}R [/tex]  

The sum of torque at the pivot is given by  

[tex]\tau = {\tau _1} + {\tau _2}[/tex]  

Replacing [tex]{\tau _1}[/tex] and [tex]{\tau _2}[/tex] by [tex]{T_{\rm{A}}}R [/tex] and [tex]- {T_{\rm{B}}}R[/tex] respectively yields  

[tex]\begin{array}{c}\\\tau = {T_{\rm{A}}}R - {T_{\rm{B}}}R\\\\ = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R\\\end{array} [/tex]  

Substituting [tex]I\alpha[/tex] for [tex]\tau[/tex] in the equation [tex]\tau = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R[/tex]  

[tex]I\alpha=\left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R[/tex]  

[tex]\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right[/tex]  

The angular acceleration of the wheel is given by [tex]\alpha = \frac{a}{R}[/tex]  

where a is the linear acceleration  

Substituting [tex]\frac{a}{R} [/tex] for [tex]\alpha[/tex] into equation  

[tex]\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right[/tex] we obtain  

[tex]\frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right[/tex]  

Net force on block A is  

[tex]{F_{\rm{A}}} = {m_{\rm{A}}}g - {T_{\rm{A}}}[/tex]  

Net force on block B is  

[tex]{F_{\rm{B}}} = {T_{\rm{B}}} - {m_{\rm{B}}}g[/tex]  

Where g is acceleration due to gravity  

Substituting [tex]{m_{\rm{B}}}a[/tex] and [tex]{m_{\rm{A}}}a[/tex] for [tex]{F_{\rm{B}}}[/tex] and [tex]{F_{\rm{A}}}[/tex] respectively into equation [tex]\frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right[/tex] and making a the subject we obtain  

[tex] \begin{array}{c}\\{m_{\rm{A}}}g - {m_{\rm{A}}}a - \left( {{m_{\rm{B}}}g + {m_{\rm{B}}}a} \right) = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g - \left( {{m_{\rm{A}}} + {m_{\rm{B}}}} \right)a = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)a = \left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g\\\\a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}\\\end{array}[/tex]  

Since [tex] {m_{\rm{B}}}[/tex] = 3kg and [tex] {m_{\rm{B}}}[/tex] = 7kg  

g=9.81 and R=0.12m, I=0.22[tex]{\rm{ kg}} \cdot {{\rm{m}}^2}[/tex]  

Substituting these we obtain  

[tex]a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}[/tex]  

[tex]\begin{array}{c}\\a = \frac{{\left( {7{\rm{ kg}} - 3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2}} \right)}}{{\left( {7{\rm{ kg}} + 3{\rm{ kg}} + \frac{{0.22{\rm{ kg/}}{{\rm{m}}^2}}}{{{{\left( {0.120{\rm{ m}}} \right)}^2}}}} \right)}}\\\\ = 1.55235{\rm{ m/}}{{\rm{s}}^2}\\\end{array} [/tex]

Therefore, the linear acceleration of block A is 1.55 [tex]{\rm{ m/}}{{\rm{s}}^2}[/tex]

(B)

For block B

[tex]{a_{\rm{B}}} = {a_{\rm{A}}}[/tex]

Therefore, the acceleration of both blocks A and B are same

1.55 [tex]{\rm{ m/}}{{\rm{s}}^2}[/tex]

(C)

The angular acceleration is [tex]\alpha = \frac{a}{R}[/tex]

[tex]\begin{array}{c}\\\alpha = \frac{{1.55{\rm{ m/}}{{\rm{s}}^2}}}{{0.120{\rm{ m}}}}\\\\ = 12.92{\rm{ rad/}}{{\rm{s}}^2}\\\end{array}[/tex]

(D)

Tension on left side of cord is calculated using

[tex]\begin{array}{c}\\{T_{\rm{B}}} = {m_{\rm{B}}}g + {m_{\rm{B}}}a\\\\ = {m_{\rm{B}}}\left( {g + a} \right)\\\end{array}[/tex]

[tex]\begin{array}{c}\\{T_{\rm{B}}} = \left( {3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} + 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 34.08{\rm{ N}}\\\end{array}[/tex]

(E)

Tension on right side of cord is calculated using

[tex]\begin{array}{c}\\{T_{\rm{A}}} = {m_{\rm{A}}}g - {m_{\rm{A}}}a\\\\ = {m_{\rm{A}}}\left( {g - a} \right)\\\end{array}[/tex]

[tex]\begin{array}{c}\\{T_{\rm{A}}} = \left( {7{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} – 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 57.82{\rm{ N}}\\\end{array}[/tex]

Ver imagen opudodennis