Respuesta :
Answer:
The electrical energy is stored in the capacitor is [tex]1.95\times10^{-7}\ J[/tex].
Explanation:
Given that,
Side = 8.00 cm
Distance = 3.80 mm
Potential difference = 86.0 V
We need to calculate the capacitance of polystyrene
Using formula of capacitance
[tex]C_{po}=\dfrac{k\epsilon_{0}A}{d}[/tex]
Put the value into the formula
[tex]C_{po}=\dfrac{2.6\times8.85\times10^{-12}\times(8.00\times10^{-2})^2}{1.9\times10^{-3}}[/tex]
[tex]C_{po}=7.75\times10^{-11}\ F[/tex]
[tex]C_{po}=77.5\ pF[/tex]
We need to calculate the capacitance of Pyrex glass
Using formula of capacitance
[tex]C_{py}=\dfrac{k\epsilon_{0}A}{d}[/tex]
Put the value into the formula
[tex]C_{py}=\dfrac{5.6\times8.85\times10^{-12}\times(8.00\times10^{-2})^2}{1.9\times10^{-3}}[/tex]
[tex]C_{py}=1.66\times10^{-10}\ F[/tex]
[tex]C_{py}=166\ pF[/tex]
We need to calculate the capacitor
Using formula of capacitor
[tex]\dfrac{1}{C}=\dfrac{1}{C_{po}}+\dfrac{1}{C_{py}}[/tex]
[tex]\dfrac{1}{C}=\dfrac{1}{77.5\times10^{-12}}+\dfrac{1}{166\times10^{-12}}[/tex]
[tex]C=52.8\times10^{-12}\ F[/tex]
We need to calculate the electrical energy is stored in the capacitor
Using formula of stored energy
[tex]U=\dfrac{1}{2}\times CV^2[/tex]
Put the value into the formula
[tex]U=\dfrac{1}{2}\times52.8\times10^{-12}\times(86)^2[/tex]
[tex]U=1.95\times10^{-7}\ J[/tex]
Hence, The electrical energy is stored in the capacitor is [tex]1.95\times10^{-7}\ J[/tex].