Respuesta :

Answer:

[tex]f'(x)=2x[/tex]

Step-by-step explanation:

Given : Function [tex]f(x)=(x-3)(x+3)[/tex]

To find : The derivative of the function by using the Product Rule ?

Solution :

The product rule of derivative is

[tex]\frac{d}{dx}(u\cdot v)=uv'+vu'[/tex]

Here, u=x-3 and v=x+3

[tex]\frac{d}{dx}((x-3)\cdot (x+3))=(x-3)\frac{d}{dx}(x+3)+(x+3)\frac{d}{dx}(x-3)[/tex]

[tex]\frac{d}{dx}((x-3)\cdot (x+3))=(x-3)1+(x+3)1[/tex]

[tex]\frac{d}{dx}((x-3)\cdot (x+3))=x-3+x+3[/tex]

[tex]\frac{d}{dx}((x-3)\cdot (x+3))=2x[/tex]

Therefore, [tex]f'(x)=2x[/tex]

Answer:

[tex]f'(x)=2x[/tex]

Step-by-step explanation:

To Find  :Find the derivative of the function by using the Product Rule. Simplify your answer. f(x) = (x - 3)(x + 3)

Solution :

[tex]f(x) = (x - 3)(x + 3)[/tex]

We will use chain rule of product

Formula : [tex]uv=u \times v' +v \tyimes u'[/tex]

=[tex](x-3) \times 1+(x+3) \times 1[/tex]

=[tex](x-3)+(x+3) [/tex]

=[tex]2x[/tex]

So, [tex]f'(x)=2x[/tex]

Hence the derivative of the function by using the Product Rule is 2x

ACCESS MORE