Respuesta :
Answer:
The final velocity of the block is 68.85m/s.
Explanation:
The final velocity can be determined by means of the equations for a Uniformly Accelerated Rectilinear Motion:
[tex]v_{f}^{2} = v_{i}^{2} + 2ad[/tex]
[tex]v_{f} = \sqrt{v_{i}^{2} + 2ad}[/tex] (1)
But it is necessary to know the acceleration. For a better procedure it will be listed the knowns and unknowns of the problem:
Knowns:
F = 167 N
[tex]\theta[/tex] = 30°
m = 1.75 Kg
d = 23.9 m
[tex]\mu[/tex] = 0.136
Unknowns:
[tex]F_{r}[/tex] = ?
a = ?
The acceleration can be found by means of Newton's second law:
[tex]\sum F_{net} = ma[/tex]
Where [tex]\sum F_{net}[/tex] is the net force, m is the mass and a is the acceleration.
[tex]Fx + Fy = ma[/tex] (2)
All the forces can be easily represented in a free body diagram, as it is shown below.
Force in the x axis:
[tex]F_{x} = F + W_{x} - F_{r}[/tex] (3)
Forces in the y axis:
[tex]F_{y} = N - W_{y}[/tex] (4)
Solving for the forces in the x axis:
[tex]F_{x} = F + W_{x} - F_{r}[/tex]
Notice that is necessary to found [tex]F_{r}[/tex]:
[tex]F_{r} = \mu N[/tex] (5)
The normal force can be obtained from equation (4)
[tex]N - W_{y} = 0[/tex]
[tex]N = W_{y}[/tex]
The component of the weight in the y axis can be gotten by means of trigonometry:
[tex]\frac{Adjacent}{Hypotenuse} = cos \theta[/tex]
[tex]\frac{W_{y}}{W} = cos \theta[/tex]
[tex]W_{y}= W cos \theta[/tex]
Remember that the weight is defined as:
[tex]W = mg[/tex]
[tex]W_{y}= mgcos \theta[/tex]
[tex]N = mg cos \theta[/tex]
[tex]F_{r} = \mu mgcos \theta [/tex]
[tex]F_{r} = (0.136)(1.75Kg)(9.8m/s^{2})(cos30)[/tex]
[tex]F_{r} = 2.01N [/tex]
The component of the weight in the x axis can be gotten by means of trigonometry:
[tex]\frac{Opposite}{Hypotenuse} = sen \theta[/tex]
[tex]\frac{W_{x}}{W} = sen \theta[/tex]
[tex]W_{x} = W sen \theta[/tex]
[tex]W_{x} = mgsen \theta[/tex]
[tex]W_{x} = (1.75Kg)(9.8m/s^2)(sen30)[/tex]
[tex]W_{x} = 8.57N[/tex]
Then, replacing [tex]W_{x}[/tex] and [tex]F_{r}[/tex] in equation (3) it is gotten:
[tex]F_{x} = 167N + 8.57N - 2.01N[/tex]
[tex]F_{x} = 173.56N[/tex]
Solving for the forces in the y axis:
[tex]F_{y} = N - W_{y}[/tex]
[tex]F_{y} = mgcos \theta - mgcos \theta[/tex]
[tex]F_{y} = 0[/tex]
Replacing the values of [tex]F_{x}[/tex] and [tex]F_{x}[/tex] in equation (2) it is gotten:
[tex]F_{x} + 0 = ma[/tex]
[tex]F_{x} = ma[/tex]
[tex]a = \frac{F_{x}}{m}[/tex]
[tex]a = \frac{173.56N}{1.75Kg}[/tex]
[tex]a = \frac{173.56Kg.m/s^{2}}{1.75Kg}[/tex]
[tex]a = 99.17m/s^{2}[/tex]
Now that the acceleration is known, equation (1) can be used:
[tex]v_{f} = \sqrt{v_{i}^{2} + 2ad}[/tex]
However, since the block was originally at rest its initial velocity will be zero ([tex]v_{i} = 0[/tex]).
[tex]v_{f} = \sqrt{2ad}[/tex]
[tex]v_{f} = \sqrt{2(99.17m/s^{2})(23.9m)}[/tex]
[tex]v_{f} = \sqrt{2(99.17m/s^{2})(23.9m)}[/tex]
[tex]v_{f} = 68.85m/s[/tex]
Hence, the final velocity of the block is 68.85m/s.
![Ver imagen bridareiven](https://us-static.z-dn.net/files/d9b/1bc9835d5bc49b923262b463cbc4fcf5.png)
Answer:
[tex]v = 19.03 m/s[/tex]
Explanation:
As we know that the block is dragged over the surface by external force at an angle of 30 degree above the horizontal
Now we will have
[tex]F_n + F sin30 = mg[/tex]
[tex]F_n = mg - F sin30[/tex]
[tex]F_n = 17.5(9.81) - 167 sin30[/tex]
[tex]F_n = 88.175 N[/tex]
now we know that net horizontal force on the block is given as
[tex]F_x = Fcos30 - F_f[/tex]
[tex]F_x = 167 cos30 - \mu F_n[/tex]
[tex]F_x = 167cos30 - 0.136(88.175)[/tex]
[tex]F_x = 132.6 N[/tex]
now we know that
work done by net force is equal to change in kinetic energy of the block
so we have
[tex]F_x . d = \frac{1}{2}mv^2 - 0[/tex]
[tex]132.6 \times 23.9 = \frac{1}{2}(17.5) v^2[/tex]
[tex]v = 19.03 m/s[/tex]