Respuesta :
Answer:
[tex]\frac{1}{27}, \frac{1}{81}, \frac{1}{243}[/tex]
Step-by-step explanation:
you divide every next term by 3
ANSWER:
The next three terms of given sequence are [tex]\frac{1}{27}, \frac{1}{81}, \frac{1}{243}[/tex]
SOLUTION:
Given, series is [tex]27,9,3,1, \frac{1}{3}, \frac{1}{6}[/tex]
Let us find which sequence does this series belongs.
[tex]\text { Here } \mathrm{t}_{1}=27, \mathrm{t}_{2}=9, \mathrm{t}_{3}=3[/tex]
Now, let us see the common difference.
[tex]t_{2}-t_{1}=9-27=-18[/tex]
[tex]\begin{array}{l}{t_{3}-t_{2}=3-9=-6} \\ {t_{2}-t_{1} \neq t_{3}-t_{2}}\end{array}[/tex]
So, the series does not belong to arithmetic progression.
Now, let us see the common ratio.
[tex]\begin{array}{l}{\frac{t_{2}}{t_{1}}=\frac{9}{27}=\frac{1}{3}} \\\\ {\frac{t_{3}}{t_{2}}=\frac{3}{9}=\frac{1}{3}} \\\\ {\frac{t_{2}}{t_{1}}=\frac{t_{3}}{t_{2}}}\end{array}[/tex]
So, the series belongs to geometric progression. And common ratio(r) = [tex]\frac{1}{3}[/tex]
We need to find the next three terms, which are [tex]\mathrm{t}_{7}, \mathrm{t}_{8}, \mathrm{t}_{9}[/tex][tex]\text { We know that, } \mathrm{t}_{\mathrm{n}}=\mathrm{t}_{1} \cdot \mathrm{r}^{\mathrm{n}-1}[/tex]
[tex]\text { Then, } \mathrm{t}_{7}=27 \times\left(\frac{1}{3}\right)^{7-1} = 27 \times\left(\frac{1}{3}\right)^{6}=27 \times \frac{1}{27 \times 27}=\frac{1}{27}[/tex]
[tex]\mathrm{t}_{8}=27 \times\left(\frac{1}{3}\right)^{8-1} = 27 \times\left(\frac{1}{3}\right)^{7} = =27 \times \frac{1}{27 \times 81}=\frac{1}{81}[/tex]
[tex]t_{9}=27 \times\left(\frac{1}{3}\right)^{9-1} = 27 \times\left(\frac{1}{3}\right)^{8} = 27 \times \frac{1}{27 \times 243}=\frac{1}{243}[/tex]
Hence the next three terms of given sequence are [tex]\frac{1}{27}, \frac{1}{81}, \frac{1}{243}[/tex]