Respuesta :
Answer:
The quadratic function f(x)=15x-76
Solution:
As given in the problem, the two points are [tex](x_1,y_1) = (5,-1)[/tex] and [tex](x_2,y_2) = (0,-76)[/tex]
We know the slope [tex]\mathrm{m}=\frac{y_2-y_1}{x_2-x_1}[/tex]
Now substituting the value of points we get,
[tex]\text { Slope } m=\frac{-76-(-1)}{0-5}=\frac{-76+1}{-5}=\frac{75}{5}=15[/tex]
We know the equation of a line at a given point [tex](x_1, y_1)[/tex] is [tex](y-y_1) = m(x-x_1)[/tex]
Let us take the point (5,-1) for the equation, then we get
[tex]\Rightarrow(y-(-1)) = m\times(x-5)[/tex]
Multiplying the signs,
[tex]\Rightarrow(y+1) = 15\times(x-5)[/tex]
[tex]\Rightarrow y+1 = 15x- 75[/tex]
[tex]\Rightarrow y = 15x -75 -1[/tex]
[tex]\Rightarrow y = 15x -76[/tex]
Hence, the function f(x) is [tex]y = 15x-76[/tex]