Respuesta :
Answer: 6 1/6 , 5.5, 4 3/8, 4.3, 3.75
Step-by-step explanation:
4.3 , 5.5 , 36, 3.75, 4.375
Answer:
[tex]\bold6 \frac{1}{6}>5.5>4_{8}^{3}>4.3>\frac{15}{4}\bold[/tex]
Solution:
Step 1: First we will convert all the number in fraction form.
[tex]4.3=\frac{4.3 \times 10}{10}=\frac{43}{10}[/tex]
[tex]5.5=\frac{5.5 \times 10}{10}=\frac{55}{10}[/tex]
[tex]6_{6}^{1}=\frac{37}{6}[/tex]
[tex]\frac{15}{4}=\frac{15}{4}[/tex]
[tex]4_{8}^{3}=\frac{35}{8}[/tex]
So, the new numbers are [tex]\frac{43}{10}, \frac{55}{10}, \frac{37}{6}, \frac{15}{4}, \frac{35}{8}[/tex]
Step 2: Now we take the L.C.M(Lowest common multiple) of the denominators.
[tex]L.C.M of 10,10,6,4,8=120[/tex]
Step 3: We make the denominator equal.
[tex]\frac{43}{10}=\frac{43 \times12}{10\times12}=\frac{516}{120}[/tex]
[tex]\frac{55}{10}=\frac{55 \times 12}{10 \times 12}=\frac{660}{120}[/tex]
[tex]\frac{37}{6}=\frac{37 \times 20}{6 \times 20}=\frac{740}{120}[/tex]
[tex]\frac{15}{4}=\frac{15 \times 30}{4 \times 30}=\frac{450}{120}[/tex]
[tex]\frac{35}{8}=\frac{35 \times 15}{8 \times 15}=\frac{525}{120}[/tex]
Step 4: Since denominators are equal we can arrange the numbers from greatest to least by arranging the numerators from greatest to least.
[tex]740>660>525>516>450[/tex]
Now arranging the real number ,
[tex]\frac{37}{6}>\frac{55}{10}>\frac{35}{8}>\frac{43}{10}>\frac{15}{4}[/tex]
[tex]=6 \frac{1}{6}>5.5>4_{8}^{3}>4.3>\frac{15}{4}[/tex]