Respuesta :

Answer:

 The coefficient of [tex]x^{5} \times y^{5} \text { is }=\left(252 \times 2^{5} \times(-3)^{5}\right)=252 \times 32 \times 243=1959552[/tex]

Solution:

The given expression is [tex](2 x-3 y)^{10}[/tex]

As per binomial theorem, we know,

[tex](x+y)^{n}=\sum n C_{k} x^{n-k} y^{k}[/tex]

Now here a = 2x, b = (- 3y) and n = 10 and k = 0,1,2,….10

Now [tex]x^{5}\times y^5[/tex] will be the 6 term where k =5

Now, [tex]\mathrm{T}_{6}=10 \mathrm{C}_{5} \times(2 \mathrm{x})^{(10-5)} \times(-3 \mathrm{y})^{5}=10 \mathrm{C}_{5} 2^{5} \times \mathrm{x}^{5} \times(-3)^{5} \times \mathrm{y}^{5}[/tex]

So, the coefficient of [tex]x^{5} \times y^{5} \text { is }=10\left(5 \times 2^{5} \times(-3)^{5}\right[/tex].

[tex]10 \mathrm{C}_{5}=\frac{10 !}{5 ! \times(10-5) !}=\frac{10 !}{5 !+5 !}=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 !}{5 ! \times 5 !}=\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1}=\left(\frac{30240}{120}\right)=252[/tex]

The coefficient of [tex]x^{5} \times y^{5} \text { is }=\left(252 \times 2^{5} \times(-3)^{5}\right)=252 \times 32 \times 243=1959552[/tex]

ACCESS MORE