Respuesta :

Answer:

x-intercept and y-intercept of the given line is  [tex]\left(-\frac{1}{5}\right)[/tex] and [tex]\left(\frac{1}{3}\right)[/tex]

Solution:

The equation of the line is [tex]-9x+15y=4[/tex]

Simplifying this we get,

[tex]\Rightarrow 9x+15y=4[/tex]

[tex]\Rightarrow 15y =9x+4[/tex]

[tex]\Rightarrow y=\left(\frac{9 x}{15}\right)+\left(\frac{4}{15}\right)[/tex]

The slope of the line is (9/15), so the slope of the line perpendicular to this will be [tex]\frac{15}{9}[/tex]

Let us assume that the y intercept is b, so the equation is [tex]y = mx + b[/tex]

Now, as that line passes through (-2,-3), hence using this point we get,

[tex]-3=\left(\frac{15}{9}\right) \times(-2)+b[/tex]

[tex]-3=\left(\frac{5}{3}\right) \times(-2)+b[/tex]

[tex]-3=-\frac{10}{3}+b[/tex]

[tex]-9=-10+3 b[/tex]

[tex]3 b=1[/tex]

[tex]b=\left(\frac{1}{3}\right)[/tex]

So the equation will be,  

[tex]y=\left(\frac{15}{9}\right) \times x+\left(\frac{1}{3}\right)[/tex]

Now to find x intercept y =0, Hence,

[tex]0=\frac{15 x}{9}+\frac{1}{3}[/tex]

[tex]0=\frac{15 x+3}{9}[/tex]

[tex](15 x+3)=0[/tex]

[tex]x=-\frac{3}{15}=-\frac{1}{5}[/tex]

To find y intercept x = 0, Hence,

[tex]y={(\frac{15}{9}})\times0+{(\frac{1}{3}})[/tex]

[tex]\Rightarrow y=\frac{1}{3}[/tex]

So, x intercept is [tex]\left(-\frac{1}{5}\right)[/tex] and y intercept is [tex]\left(\frac{1}{3}\right)[/tex]

ACCESS MORE