Be sure to answer all parts. Ozone molecules in the stratosphere absorb much of the harmful radiation from the sun. How many ozone molecules are present in 5.00 L of air under the stratospheric ozone conditions of 251 K temperature and 1.79 × 10−3 atm pressure

Respuesta :

Answer:

there are 0.00043484598 mol of ozone molecules

Explanation:

To find how many molecules of ozone there are in those conditions we have to apply the ideal gas law P×V = n×R×T

Where P stands for Pressure of the gas, V for volume, n is for the amount of gas in moles, R for the universal gas constant which is 0.082 atm×l\ K×mol and T stands for temperature in Kelvin.

if we replace what with the information:

P×V=n×R×T

1.79×10-3 ×5l = n × 0.082 atm×l ×251K

                                 K×mol

0,00895 atm×l = n × 20.582 atm×l

                                    mol

we pass 20.582 atm×l      to the other side                              

                   mol

0.00895 atm×l   = n

20.582 atm×l\mol

we divide and simplify atm ×l with atm× l and the result is:

0.00043484598 mol=n

Answer:

There are [tex]2.6172 \times 10^{20}[/tex] molecules of ozone present in 5.00 L of air under the stratospheric ozone conditions of 251 K temperature and [tex]1.79 \times 10^{-3}[/tex] atm pressure.

Explanation:

To find the number of molecules of ozone you need to:

  1. Use the Ideal Gas equation to find the moles of ozone and,
  2. Use the Avogadro number ([tex]6.02214\times 10^{23}[/tex]) to find the molecules of ozone.

Given

[tex]V= 5.00 \:L\\T=251 \:K\\P=1.79 \times 10^{-3} \:atm[/tex]

The Ideal Gas equation is

[tex]PV=nRT[/tex]

solving for n

[tex]n=\frac{PV}{RT}[/tex]

where

[tex]R=0.08205 \:\frac{L\cdot atm}{mol \cdot K}[/tex]

Substituting the values given into the expression we derived for n, we obtain

[tex]n=\frac{(1.79 \times 10^{-3} \:atm)\cdot (5.00 \:L)}{(0.08205 \:\frac{L\cdot atm}{mol \cdot K})\cdot (251 \:K)}= 4.346\times 10^{-4} \:mol[/tex]

Find the number of molecules of ozone

[tex]4.346\times 10^{-4} \:mol \cdot 6.02214\times 10^{23}\:\frac{molecules}{mol} =2.6172 \times 10^{20} \:molecules[/tex]