Answer:
UCL = 0.406
LCL = 0.244
Step-by-step explanation:
Data is shown below:
Here ∑np = 293
∑n = 900
Calculating the average of the data:
[tex]\bar{p}=\frac{\sum np}{\sum n}\\\bar{p}=\frac{293}{9000} = 0.325[/tex]
[tex]\text{and,} \bar n=\frac{\sum n}{k}\\ \bar n=\frac{9000}{30} = 300[/tex]
Now, Calculating Upper and Lower Limit:
[tex]UCL =\bar{p}+ 3\sqrt\frac{\bar p(1- \bar p)}{\bar n} \\UCL = 0.325 + 3\sqrt\frac{0.325(1- 0.325)}{300}\\\Rightarrow UCL = 0.406[/tex]
[tex]\text{and,} LCL =\bar{p}- 3\sqrt\frac{\bar p(1- \bar p)}{\bar n} \\LCL = 0.325 - 3\sqrt\frac{0.325(1- 0.325)}{300}\\\Rightarrow LCL = 0.244[/tex]