Answer:
The area of the square is [tex]\mathbf{37.626 cm^2}[/tex]
Explanation:
The thermal linear expansion equation for each direction is given by
[tex]L_1=l_1\left(1+\alpha_1\Delta T\right)\\L_2=l_2\left(1+\alpha_2\Delta T\right).[/tex]
First, let's find the increase in temperature for which both lengths are equal
[tex]L_e=L_1=L_2\\l_1\left(1+\alpha_1\Delta T\right)=l_2\left(1+\alpha_2\Delta T\right)\\l_1-l_2 = \left(l_2\alpha_2-l_1\alpha_1\right)\Delta T\\\Delta T = \frac{l_1-l_2}{l_2\alpha_2 - l_1\alpha_1},[/tex]
substituing the given values, we have
[tex]\Delta T = \frac{6.1cm - 6.0cm}{6.0cm\times 40\times 10^{-5} K^{-1} - 6.1cm\times 10\times 10^{-5} K^{-1}}\\\Delta T \approx 55.8659 K.[/tex]
Now, the area of the perfect square can be calculated from [tex]L_1^2[/tex] or [tex]L_2^2[/tex] (at this temperature), indisctintly. Let's take the first one
[tex]L_e = l_1\left(1+\alpha_1\Delta T\right)\\L_e = 6.1 cm\left(1+10\times 10^{-5} K^{-1}\times 55.8659 K\right)\\L_e \approx 6.1340 cm,[/tex]
then
[tex]\mathbf{A=L_e^2\approx (6.1340cm)^2 \approx 37.626cm^2}[/tex]