Answer:[tex]\vec{F_3}=48.19\hat{i}-6.49\hat{j}[/tex]
Explanation:
Given
Force [tex]\vec{F_1}=36.6\hat{i}+16.2\hat{j}[/tex]
[tex]\vec{F_2}=-12\hat{i}+8\hat{j}[/tex]
let us suppose [tex]\vec{F_3}=F\cos \theta \hat{i}+\F\sin \theta \hat{j}[/tex]
acceleration
[tex]\vec{a}=-8\hat{i}+6\hat{j}[/tex]
Force in x direction
[tex]F_x_{net}=36.6+-12+F\sin \theta [/tex]
[tex]a_{x}=\frac{F_x_{net}}{m}=\frac{36.6+-12+F\cos \theta }{2.95}[/tex]
[tex]-8\times 2.95=36.6-12+F\cos \theta [/tex]
[tex]-23.6=24.6+F\cos \theta [/tex]
[tex]F\cos \theta =-48.2[/tex]----1
[tex]a_{y}=\frac{F_y_{net}}{m}=\frac{16.2+8+F\sin \theta }{2.95}[/tex]
[tex]2.95\times 6=16.2+8+F\sin \theta [/tex]
[tex]17.7=24.2+F\sin \theta [/tex]
[tex]F\sin \theta =-6.5[/tex]-----2
squaring and adding 1 & 2
[tex]F^2=2365.49[/tex]
F=48.63 N
substitute F in 2
[tex]sin\theta =-0.1336[/tex]
[tex]\theta =-7.677[/tex]
thus [tex]\vec{F_3}=48.63\cos (-7.677)\hat{i}+48.63\sin (-7.677)\hat{j}[/tex]
[tex]\vec{F_3}=48.19\hat{i}-6.49\hat{j}[/tex]