Is (–5, 0.5) a solution of this system? x – 4y = –7, 0.2x + 2y = 0 Substitute (–5, 0.5) into x – 4y = –7 to get . Substitute (–5, 0.5) into 0.2x + 2y = 0 to get . Simplify the above equations to get

Respuesta :

ANSWER:

(-5, 0.5) is the solution of given equation x – 4y = –7, 0.2x + 2y = 0.

SOLUTION:

Given, two equations are x – 4y = -7 → (1)

And 0.2x + 2y = 0 → (2)

We have to find whether (-5, 0.5) is a solution of given system or not.

For that, we have to solve the given two equations.  

Before solving let us multiply equation (2) with 2 in order to get y terms cancelled. Such that, our  process becomes easy.  

Now equation (2) becomes

0.4x + 4y = 0 → ( 3 )

Now, add equation (1) and equation (3), we get

1.4x + 0 = -7

[tex]x=\frac{-7}{1.4}=-5[/tex]

Now, substitute x value in (2)

0.2(-5) + 2y = 0

-1 + 2y = 0

2y = 1

y = 0.5

So, the solution for given equations is (-5, 0.5).

Hence (-5, 0.5) is the solution of given equations.  

Answer:

Step-by-step explanation: your welcome

Ver imagen sammathis
ACCESS MORE