Respuesta :
Answer:
[122.23, 137.77]
Step-by-step explanation:
In order to do this, we will be using the two sample z-statistic given by the formula
[tex]\large z=\frac{(\bar x_1 -\bar x_2)-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}}[/tex]
where
[tex]\large \bar x_1[/tex] = the sample mean strength for the specimens cured at 130°C
[tex]\large \bar x_2[/tex] = the sample mean strength for the specimens cured at 150°C
[tex]\large \mu_1[/tex] = the population mean strength for the specimens cured at 130°C (μX)
[tex]\large \mu_2[/tex] = the population mean strength for the specimens cured at 150°C (μY)
[tex]\large \sigma_1[/tex] = the sample standard deviation for the specimens cured at 130°C
[tex]\large \sigma_2[/tex] = the sample standard deviation for the specimens cured at 150°C
[tex]\large n_1[/tex] = the sample size for the specimens cured at 130°C
[tex]\large n_2[/tex] = the sample size for the specimens cured at 150°C
z = 1.96, the z-score for a 95% confidence interval
Replacing values we have
[tex]\large 1.96=\frac{(750-620)-(\mu_1-\mu_2)}{\sqrt{30^2/90+20^2/70}}[/tex]
[tex]\large 1.96=\frac{130-(\mu_1-\mu_2)}{\sqrt{10+5.714285}}=\frac{130-(\mu_1-\mu_2)}{3.9641}[/tex]
So, the 95% confidence interval for μX- μY = [tex]\large \mu_1-\mu_2[/tex] is the interval
[130 - 1.96*3.9641, 130 +1.96*3.9641] = [122.23, 137.77] rounded to two decimal places.