Answer:[tex]12.74 ft^2/s[/tex]
Step-by-step explanation:
Given
Two sides of triangle of sides 5 ft and 7 ft
and angle between them is increasing at a rate of 0.9 radians per second
let [tex]\theta [/tex]is the angle between them thus
Area of triangle when two sides and angle between them is given
[tex]A=\frac{ab\sin C}{2}[/tex]
[tex]A=\frac{5\times 7\times \sin \theta }{2}[/tex]
Differentiate w.r.t time
[tex]\frac{\mathrm{d} A}{\mathrm{d} t}=\frac{35\cos theta }{2}\times \frac{\mathrm{d} \theta }{\mathrm{d} t}[/tex]
at [tex]\theta =\frac{\pi }{5}[/tex]
[tex]\frac{\mathrm{d} A}{\mathrm{d} t}=\frac{35\times cos(\frac{\pi }{5})}{2}\times 0.9[/tex]
[tex]\frac{\mathrm{d} A}{\mathrm{d} t}=12.74 ft^2/s[/tex]