Answer:
dV = 32.98 cm³
Explanation:
We know that
V = f ( h,r)
[tex]dV= \frac{\partial V}{\partial r}dr+ \frac{\partial V}{\partial h}dh[/tex]
We also know that
[tex]V=\pi r^2h[/tex]
[tex]dV= 2\pi h dr + \pi r^2 dh[/tex]
Given that
h= 10 cm
d=10 cm , r= 5 cm
Thickness = 0.05 cm so dr = 0.05 cm
The metal in the top and the bottom is 0.2 cm thick so dh = 0.2 + 0.2 cm
dh = 0.4 cm
Now by putting the values
[tex]dV= 2\pi h dr + \pi r^2 dh[/tex]
[tex]dV= 2\times \pi \times 5\times 0.05 + \pi \times 5^2\times 0.4\ cm^3[/tex]
dV = 32.98 cm³