Answer:
[tex]\theta = 106.3 degree[/tex]
Explanation:
As we know that
[tex]\vec w = -\hat i + 7\hat j[/tex]
[tex]\vec v = 7\hat i - \hat j[/tex]
also we know that
[tex]\vec v. \vec w = -14[/tex]
it is given as
[tex]\vec v. \vec w = (-\hat i + 7\hat j).(7\hat i - \hat j)[/tex]
[tex]\vec v. \vec w = - 7 - 7 = -14[/tex]
also we can find the magnitude of two vectors as
[tex]|v| = \sqrt{(-1)^2 + (7)^2}[/tex]
[tex]|v| = \sqrt{50}[/tex]
similarly we have
[tex]|w| = \sqrt{(7^2) + (-1)^2}[/tex]
[tex]|w| = \sqrt{50}[/tex]
now we know the formula of dot product as
[tex]\vec v. \vec w = |v||w| cos\theta[/tex]
[tex]-14 = (\sqrt{50})^2cos\theta[/tex]
[tex]\theta = cos^{-1}(\frac{-14}{50})[/tex]
[tex]\theta = 106.3 degree[/tex]