Suppose the equation of line s is y = 2. What are the coordinates of C' of ΔA'B'C' for Rs?

The graph with X-coordinate marks -4, 0, 4 and Y-coordinate mark -4, -1, 0, and 4. The triangle ABC with coordinates A at (-1, 1), B at (1, -1), C at (-3, -1).

Respuesta :

frika

Answer:

C'(-3,5)

Step-by-step explanation:

Given triangle ABC with vertices at points A(-1, 1), B(1, -1), C(-3, -1).

Line s with equation y = 2 is the line of reflection.

The reflection across the line s has the rule

[tex](x,y)\rightarrow (x,4-y)[/tex]

According to this rule:

  • [tex]A(-1,1)\rightarrow A'(-1,3);[/tex]
  • [tex]B(1,-1)\rightarrow B'(1,5);[/tex]
  • [tex]C(-3,-1)\rightarrow C'(-3,5).[/tex]

Ver imagen frika

When a shape is reflected, it must be reflected across a line.

The coordinates of C' is (-3,5)

The coordinates of the triangle are:

[tex]A=(-1,1)[/tex]

[tex]B=(1,-1)[/tex]

[tex]C=(-3,-1)[/tex]

The rule of reflection across line y = 2 is:

[tex](x,y) = (x,4-y)[/tex]

So, we have:

[tex]A' = (-1,4-1)[/tex]

[tex]A' = (-1,3)[/tex]

[tex]B' = (1,4--1)[/tex]

[tex]B' = (1,5)[/tex]

[tex]C' = (-3,4--1)[/tex]

[tex]C' = (-3,5)[/tex]

Hence, the coordinates of C' is (-3,5)

Read more about reflections at:

https://brainly.com/question/1548989

ACCESS MORE