Respuesta :
Answer:
C'(-3,5)
Step-by-step explanation:
Given triangle ABC with vertices at points A(-1, 1), B(1, -1), C(-3, -1).
Line s with equation y = 2 is the line of reflection.
The reflection across the line s has the rule
[tex](x,y)\rightarrow (x,4-y)[/tex]
According to this rule:
- [tex]A(-1,1)\rightarrow A'(-1,3);[/tex]
- [tex]B(1,-1)\rightarrow B'(1,5);[/tex]
- [tex]C(-3,-1)\rightarrow C'(-3,5).[/tex]
![Ver imagen frika](https://us-static.z-dn.net/files/d83/cab835d4b4bdd3095c6f30eac621ea4f.jpg)
When a shape is reflected, it must be reflected across a line.
The coordinates of C' is (-3,5)
The coordinates of the triangle are:
[tex]A=(-1,1)[/tex]
[tex]B=(1,-1)[/tex]
[tex]C=(-3,-1)[/tex]
The rule of reflection across line y = 2 is:
[tex](x,y) = (x,4-y)[/tex]
So, we have:
[tex]A' = (-1,4-1)[/tex]
[tex]A' = (-1,3)[/tex]
[tex]B' = (1,4--1)[/tex]
[tex]B' = (1,5)[/tex]
[tex]C' = (-3,4--1)[/tex]
[tex]C' = (-3,5)[/tex]
Hence, the coordinates of C' is (-3,5)
Read more about reflections at:
https://brainly.com/question/1548989