Answer:
a)[tex]S=h\dfrac{1+r}{1-r}[/tex]
b)[tex]t=\sqrt{\dfrac{2h}{g}\times \dfrac{1+r}{1-r}}[/tex]
Explanation:
a)The total distance
S= h+ 2rh + 2r²h+2³rh+--------∞
S= 2h( 1 + 2 r + 2r² + ----∞ ) - h
By using summation series
[tex]S=\dfrac{2h}{1-r}-H[/tex]
[tex]S=h\dfrac{1+r}{1-r}[/tex]
b)
We know that
[tex]y=ut+\dfrac{1}{2}gt^2[/tex]
[tex]S=\dfrac{1}{2}gt^2[/tex]
By putting the value of S
[tex]h\dfrac{1+r}{1-r}=\dfrac{1}{2}gt^2[/tex]
[tex]t=\sqrt{\dfrac{2h}{g}\times \dfrac{1+r}{1-r}}[/tex]