Answer:
[tex]p_{Cl_2}=629.25mmHg\\p_{N_2}=209.75mmHg[/tex]
Explanation:
Hello,
At first, consider the chemical reaction:
[tex]2NCl_3-->3Cl_2+N_2[/tex]
Now, considering the ideal gas equation, we compute the total moles:
[tex]PV=nRT\\n=\frac{PV}{RT} \\n=\frac{839mmHg*\frac{1atm}{760mmHg}*3L }{0.082\frac{atm*L}{mol*K}*359K }\\ n=0.1125mol[/tex]
Then, taking into account that the total moles are stoichiometrically handed out by the half (0.05625mol), one can say that:
[tex]n_{Cl_2}=0.05625molNCl_3*\frac{3mol Cl_2}{2molNCl_3} =0.084375molCl_2\\n_{N_2}=0.05625molNCl_3*\frac{1mol N_2}{2molNCl_3} =0.028125molN_2[/tex]
Thus, the molar fractions are:
[tex]x_{Cl_2}=\frac{0.084375}{0.1125} =0.75\\x_{N_2}=\frac{0.028125}{0.1125} =0.25[/tex]
Finally, the partial pressures are:
[tex]p_{Cl_2}=x_{Cl_2}P=0.75*839mmHg=629.25mmHg\\p_{N_2}=x_{N_2}P=0.25*839mmHg=209.75mmHg[/tex]
Best regards.