Respuesta :
Answer:
The function [tex]f(x)=6x^3-54x^2-126x-8[/tex] is decreasing on the interval [tex](-1,7)[/tex] and it is increasing on the interval [tex](-\infty, -1)\cup (7, \infty)[/tex]
Step-by-step explanation:
To determine the intervals of increase and decrease of the function [tex]f(x)=6x^3-54x^2-126x-8[/tex], perform the following steps:
1. Differentiate the function
[tex]\frac{d}{dx}\left(6x^3-54x^2-126x-8\right)=\\\\\mathrm{Apply\:the\:Sum/Difference\:Rule}:\quad \left(f\pm g\right)'=f\:'\pm g'\\\\\frac{d}{dx}\left(6x^3\right)-\frac{d}{dx}\left(54x^2\right)-\frac{d}{dx}\left(126x\right)-\frac{d}{dx}\left(8\right)\\\\f'(x)=18x^2-108x-126[/tex]
2. Obtain the roots of the derivative, f'(x) = 0
[tex]\mathrm{Factor\:out\:common\:term\:}18:\quad 18\left(x^2-6x-7\right)\\\\\mathrm{Factor}\:x^2-6x-7:\quad \left(x+1\right)\left(x-7\right)\\\\18x^2-108x-126:\quad 18\left(x+1\right)\left(x-7\right)\\\\18x^2-108x-126=0\quad :\quad x=-1,\:x=7[/tex]
3. Form open intervals with the roots of the derivative and take a value from every interval and find the sign they have in the derivative.
If f'(x) > 0, f(x) is increasing.
If f'(x) < 0, f(x) is decreasing.
On the interval [tex]\left(-\infty, -1\right)[/tex], take x = -2,
[tex]f'(-2)=18(-2)^2-108(-2)-126=162[/tex] f'(x) > 0 therefore f(x) is increasing
On the interval [tex]\left(-1,7)[/tex], take x = 0,
[tex]f'(0)=18(0)^2-108(0)-126=-126[/tex] f'(x) < 0 therefore f(x) is decreasing
On the interval [tex]\left(7, \infty\right)[/tex], take x = 10,
[tex]f'(10)=18(10)^2-108(10)-126=594[/tex] f'(x) > 0 therefore f(x) is increasing
The function [tex]f(x)=6x^3-54x^2-126x-8[/tex] is decreasing on the interval [tex](-1,7)[/tex] and it is increasing on the interval [tex](-\infty, -1)\cup (7, \infty)[/tex]