Answer:
[tex]U=1.29\times 10^{-7}\ J[/tex]
Explanation:
Given that
a= 8 cm (square)
A= a ² = 64 cm²
d= 4.2 mm
d₁= 2.1 mm ,K₁= 4.7
d₂=2.1 mm , K₂=2.6
We know that capacitance given as
[tex]C_1=\dfrac{K_1\varepsilon _oA}{d_1}[/tex]
[tex]C_1=\dfrac{4.7\times 8.85\times 10^{-12}\times 64\times 10^{-4}}{2.1\times 10^{-3}}[/tex]
[tex]C_1=1.26\times 10^{-10}\ F[/tex]
[tex]C_2=\dfrac{K_2\varepsilon _oA}{d_2}[/tex]
[tex]C_2=\dfrac{2.6\times 8.85\times 10^{-12}\times 64\times 10^{-4}}{2.1\times 10^{-3}}[/tex]
[tex]C_2=0.701\times 10^{-10}\ F[/tex]
Net capacitance
[tex]C=\dfrac{C_1C_2}{C_1+C_2}[/tex]
[tex]C=\dfrac{1.26\times 10^{-10}\times 0.701\times 10^{-10}}{1.26\times 10^{-10}+0.701\times 10^{-10}}\ F[/tex]
[tex]C=4.5\times 10^{-11}\ F[/tex]
We know that stored energy given as
[tex]U=\dfrac{CV^2}{2}[/tex]
V= 76 V
[tex]U=\dfrac{4.5\times 10^{-11}\times 76^2}{2}\ J[/tex]
[tex]U=1.29\times 10^{-7}\ J[/tex]