Answer:
0.8994 grams of tritium
Explanation:
Half life of tritium = 12.32 years
[tex]t_{1/2}=\frac {ln\ 2}{k}[/tex]
Where, k is rate constant
So,
[tex]k=\frac {ln\ 2}{t_{1/2}}[/tex]
[tex]k=\frac {ln\ 2}{12.32}\ year^{-1}[/tex]
The rate constant, k = 0.0563 year⁻¹
Time = 1895 to 2018 = 124 years
Using integrated rate law for first order kinetics as:
[tex][A_t]=[A_0]e^{-kt}[/tex]
Where,
[tex][A_t][/tex] is the concentration at time t
[tex][A_0][/tex] is the initial concentration = 1024 grams
So,
[tex][A_t]=1024\times e^{-0.0563\times 125}=0.8994\ grams[/tex]
In 2018, we have 0.8994 grams of tritium.