Respuesta :

Answer:

0.8994 grams of tritium

Explanation:

Half life of tritium = 12.32 years

[tex]t_{1/2}=\frac {ln\ 2}{k}[/tex]

Where, k is rate constant

So,  

[tex]k=\frac {ln\ 2}{t_{1/2}}[/tex]

[tex]k=\frac {ln\ 2}{12.32}\ year^{-1}[/tex]

The rate constant, k = 0.0563 year⁻¹

Time = 1895 to 2018 = 124 years

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t

[tex][A_0][/tex] is the initial concentration  = 1024 grams

So,  

[tex][A_t]=1024\times e^{-0.0563\times 125}=0.8994\ grams[/tex]

In 2018, we have 0.8994 grams of tritium.

ACCESS MORE