[14] Use the Maxwell distribution of speeds to estimate the fraction of CO2 molecules at 300 K that have speeds in the range 200 to 250 m s Approximate the integral by calculating the area of the region as a rectangle whose height equals that of the full distribution at the center of the range.

Respuesta :

Explanation:

Speed (c) will be calculated as follows.

                  c = [tex]\frac{200 m/s + 250 m/s}{2}[/tex] = 225 m/s

Speed range (dc) will be calculated as follows.

               dc = (250 - 200) [tex]ms^{-1}[/tex]

                    = 50 [tex]ms^{-1}[/tex]

Boltzmann constant = [tex]1.38 \times 10^{-23} kg m^{2}/K s^{2}[/tex]

     T = 300 K,       mass of [tex]CO_{2}[/tex] molecule = [tex]7.31 \times 10^{-26} kg[/tex]

Calculate the fraction of molecules in range dc as follows.

           [tex]\frac{dN}{N} = 4 \pi c^{2} (\frac{m}{2 \pi K_{B}T})^{\frac{3}{2}} e^{\frac{-mc^{2}}{2K_{B}T}} dc[/tex]

    = [tex]4 \times 3.14 \times (225)^{2} (\frac{7.31 \times 10^{-26} kg}{2 \times 3.14 \times 1.38 \times 10^{-23} kg m^{2}/K s^{2} \times 300 K})^{\frac{3}{2}} e^{\frac{-7.31 \times 10^{-26} kg \times (225)^{2}}{2 \times 1.38 \times 10^{-23} kg m^{2}/K s^{2} \times 300 K}} dc[/tex]

                              = 0.001917

Thus, we can conclude that fraction of [tex]CO_{2}[/tex] molecules present are 0.001917.

ACCESS MORE