Respuesta :
Answer:
The table of values is attached.
The graph of the line shows that the points [tex](-1,-3.75), (0,-3), (1, -2.25)\ and\ (2,-1.5)[/tex] lie on the line.
Step-by-step explanation:
The equation of the line in Slope-Intercept form is:
[tex]y=mx+b[/tex]
Where "m" is the slope and "b" is the y-intercept.
Given the equation:
[tex]3x-4y = 12[/tex]
We can solve for the variable "y" in order to write in Slope-Intercept form:
[tex]3x-4y = 12\\\\-4y=-3x+12\\\\y=\frac{3}{4}x-3[/tex]
The nex step is to give values to the variables "x", then substitute each value into the equation and evaluate, in order to find the correspondings values of "y".
[tex]For\=-1:\\\\y=\frac{3}{4}(-1)-3=-3.75[/tex]
[tex]For\ x=0:\\\\y=\frac{3}{4}(0)-3=-3[/tex]
[tex]For\ x=1:\\\\y=\frac{3}{4}(1)-3=-2.25[/tex]
[tex]For\ x=2:\\\\y=\frac{3}{4}(2)-3=-1.5[/tex]
With this values we can make the table attached.
We can identify the slope of the line and the y-intercept are:
[tex]m=\frac{3}{4}\\\\b=-3[/tex]
Then we can graph it
Observe that the points [tex](-1,-3.75), (0,-3), (1, -2.25)\ and\ (2,-1.5)[/tex] lie on the line.
![Ver imagen luisejr77](https://us-static.z-dn.net/files/da3/fb7a497ebac7c34511b02233ef37111a.jpg)
![Ver imagen luisejr77](https://us-static.z-dn.net/files/dd8/97cd3e8ae0bf1846666fbcf252664f55.jpg)