Respuesta :

Answer:

f(x) = [tex]\frac{1}{4}[/tex] x³ - 3x - 4

Step-by-step explanation:

Given that x = - 2 has multiplicity 2 and x = 4 are zeros then

(x + 2)² and (x - 4) are the factors of the polynomial and the polynomial is the product of the factors, thus

f(x) = a(x + 2)²(x - 4) ← a is a multiplier

To find a substitute (0, 16) into the equation

16 = a(4)(16), thus

64a = 16

a = [tex]\frac{16}{64}[/tex] = [tex]\frac{1}{4}[/tex]

f(x) = [tex]\frac{1}{4}[/tex](x + 2)²(x - 4) ← expand factors

    = [tex]\frac{1}{4}[/tex](x² + 4x + 4)(x - 4)

    = [tex]\frac{1}{4}[/tex](x³ + 4x² + 4x - 4x² - 16x - 16)

    = [tex]\frac{1}{4}[/tex](x³- 12x - 16)

   = [tex]\frac{1}{4}[/tex] x³ - 3x - 4