Respuesta :
Answer:
The maximum value= 36
Minimum value = - 36
Step-by-step explanation:
Given that
f(x, y, z) = 8 x + 8 y + 4 z
h(x,y,z)=4 x² + 4 y² + 4 z² - 36
From Lagrange multipliers
Δf = λ Δh
Δf = < 8 ,8 , 4>
Δh = < 8 x ,8 y , 8 z>
Δf = λ Δh
So
< 8 ,8 , 4> = < 8 λ x ,8 λ y , 8 λ z>
8 = 8 λ x -------------1
8 = 8 λ y ---- ------2
4 = 8 λ z ----------------3
From equation 1 ,2 and 3
Now by putting the value of x,y and z in the following equation
4 x² + 4 y² + 4 z² = 36
[tex]4\times \dfrac{1}{\lambda^2 }+4\times \dfrac{1}{\lambda^2 }+4\times \dfrac{1}{(2\lambda)^2 }=36[/tex]
[tex]\dfrac{4}{\lambda^2 }+ \dfrac{4}{\lambda^2 }+ \dfrac{1}{\lambda^2 }=36[/tex]
So the value of λ is
[tex]\lambda =\pm \dfrac{1}{2}[/tex]
When λ = 1/2
x = 1 / λ , y=1 / λ , z= 1 /2 λ
x= 2 , y = 2 , z=1
So
f(x, y, z) = 8 x + 8 y + 4 z
f(2, 2, 1) = 8 x 2 + 8 x 2 + 4 x 1
f(2, 2, 1) =36
When λ = - 1/2
x = 1 / λ , y=1 / λ , z= 1 /2 λ
x= - 2 , y = - 2 , z= - 1
So
f(x, y, z) = 8 x + 8 y + 4 z
f(-2, -2, -1) = 8 x (-2) + 8 x (-2) + 4 x (-1)
f(-2, -2, -1) = - 36
The maximum value= 36
Minimum value = - 36
Answer:
Maximum value of f(x,y,z)=36 at (2,2,1)
Minimum value of f(x,y,z)=-36 at (-2,-2,-1)
Step-by-step explanation:
We are given that
[tex]f(x,y,z)=8x+8y+4z[/tex]
[tex]g(x,y,z)=4x^2+4y^2+4z^2=36[/tex]
We have to find the extreme values of the function using Lagrange multipliers.
[tex]f_x(x,y,z)=8[/tex]
[tex]f_y(x,y,z)=8[/tex]
[tex]f_z(x,y,z)=4[/tex]
[tex]g_x(x,y,z)=8x[/tex]
[tex]g_y(x,y,z)=8y[/tex]
[tex]g_z(x,y,z)=8z[/tex]
[tex]f_x=\lambda g_x[/tex]
[tex]8=8x\lambda[/tex]
[tex]x=\frac{1}{\lambda}[/tex]
[tex]f_y=\lambda g_y[/tex]
[tex]8=8y\lambda[/tex]
[tex]y=\frac{1}{\lambda}[/tex]
[tex]f_z=\lambda g_y[/tex]
[tex]4=8z\lambda[/tex]
[tex]z=\frac{1}{2\lambda}[/tex]
Substitute the values in g(x,y,z)
[tex]4(\frac{1}{\lambda})^2+4(\frac{1}{\lambda})^2+4(\frac{1}{2\lambda})^2=36[/tex]
[tex]\frac{4}{\lambda^2}+\frac{4}{\lambda^2}+\frac{1}{\lambda^2}=36[/tex]
[tex]\frac{9}{\lambda^2}=36[/tex]
[tex]\lambda^2=\frac{9}{36}=\frac{1}{4}[/tex]
[tex]\lambda=\pm\frac{1}{2}[/tex]
Substitute [tex]\lambda=\frac{1}{2}[/tex]
[tex]x=2,y=2,z=1[/tex]
Substitute [tex]\lambda=-\frac{1}{2}[/tex]
[tex]x=-2,y=-2,z=-1[/tex]
Now, [tex]f(2,2,1)=8(2)+8(2)+4(1)=16+16+4=36[/tex]
[tex]f(-2,-2,-1)=8(-2)+8(-2)+4(-1)=-16-16-4=-36[/tex]
Maximum value of f(x,y,z)=36 at (2,2,1)
Minimum value of f(x,y,z)=-36 at (-2,-2,-1)