Respuesta :

(x-5)(x+2)=0
roots: x=5 and x= -2
see attached photo for steps
Ver imagen mindyyyy

☯ Given

[tex] \normalsize\sf\ x^2 - 3x - 10 x

[/tex]

☯ To find

[tex] \normalsize\sf\ Roots \: of \: Equation[/tex]

[tex]\underline{\bigstar\:\textsf{By \: using \: Quadratic \: formula:}} [/tex]

[tex]\normalsize\ : \implies\sf\ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]

[tex]\normalsize\ : \implies\sf\ x = \frac{-(-3) \pm \sqrt{(3)^2 - 4 \times\ 1 \times\ (-10)}}{2 \times\ 1}[/tex]

[tex]\normalsize\ : \implies\sf\ x = \frac{3 \pm \sqrt{9 - (-40)}}{2}[/tex]

[tex]\normalsize\ : \implies\sf\ x = \frac{3 \pm \sqrt{9 + 40}}{2} [/tex]

[tex]\normalsize\ : \implies\sf\ x = \frac{3 \pm \sqrt{49}}{2}[/tex]

[tex]\normalsize\ : \implies\sf\ x = \frac{3 \pm 7}{2} [/tex]

[tex]\normalsize\ : \implies\sf\ x = \frac{ 3 + 7}{2} \: \: or \: \: \frac{3 - 7}{2}[/tex]

[tex]\normalsize\ : \implies\sf\ x = \frac{\cancel{10}}{\cancel{2}} \: \: or \: \: \frac{\cancel{-4}}{\cancel{2}}[/tex]

[tex]\normalsize\ : \implies\sf\ x = 5 \: \: or \: \: -2 [/tex]

[tex]\normalsize\ : \implies{\underline{\boxed{\sf \red{ x = 5 \: \: or \: \: -2}}}} [/tex]

[tex]\therefore\:\underline{\textsf{Hence, \: the \: value \: of \: x \: is}{\textbf{\: 5 \: or \: -2}}}[/tex]

[tex]\underline{\bigstar\:\textsf{By \: using \: Middle \: term \: factorization:}} [/tex]

[tex]\normalsize\dashrightarrow\sf\ x^2 - 3x - 10 = 0[/tex]

[tex]\normalsize\dashrightarrow\sf\ x^2 - 5x + 2x - 10 = 0[/tex]

[tex]\normalsize\dashrightarrow\sf\ x(x - 5) + 2(x - 5) = 0[/tex]

[tex]\normalsize\dashrightarrow\sf\ (x - 5)(x + 2) = 0[/tex]

[tex]\normalsize\dashrightarrow\sf\ (x - 5) = 0 \: or \: (x + 2) = 0[/tex]

[tex]\normalsize\dashrightarrow\sf\ x = 0 + 5 \: or \: x = 0 - 2[/tex]

[tex]\normalsize\dashrightarrow\sf\ x = 5 \: or \: x = -2[/tex]

[tex]\normalsize\dashrightarrow{\underline{\boxed{\sf \red{x = 5 \: or \: -2}}}}[/tex]

[tex]\therefore\:\underline{\textsf{Hence, \: the \: value \: of \: x \: is}{\textbf{\: 5 \: or \: -2}}}[/tex]

ACCESS MORE