Respuesta :

Answer:

t = 465.16 years

Explanation:

Given that:

Half life = 1.4 x 100 years = 140 years

[tex]t_{1/2}=\frac {ln\ 2}{k}[/tex]

Where, k is rate constant

So,  

[tex]k=\frac {ln\ 2}{t_{1/2}}[/tex]

[tex]k=\frac {ln\ 2}{140}\ year^{-1}[/tex]

The rate constant, k = 0.00495 year⁻¹

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t

[tex][A_0][/tex] is the initial concentration

As 10% of the initial remains, so:

[tex]\frac {[A_t]}{[A_0]}=0.1[/tex]

So,  

[tex]0.1=e^{-0.00495\times t}[/tex]

t = 465.16 years