Answer:
t = 465.16 years
Explanation:
Given that:
Half life = 1.4 x 100 years = 140 years
[tex]t_{1/2}=\frac {ln\ 2}{k}[/tex]
Where, k is rate constant
So,
[tex]k=\frac {ln\ 2}{t_{1/2}}[/tex]
[tex]k=\frac {ln\ 2}{140}\ year^{-1}[/tex]
The rate constant, k = 0.00495 year⁻¹
Using integrated rate law for first order kinetics as:
[tex][A_t]=[A_0]e^{-kt}[/tex]
Where,
[tex][A_t][/tex] is the concentration at time t
[tex][A_0][/tex] is the initial concentration
As 10% of the initial remains, so:
[tex]\frac {[A_t]}{[A_0]}=0.1[/tex]
So,
[tex]0.1=e^{-0.00495\times t}[/tex]
t = 465.16 years