Answer:
[tex]v=1667.9km/h[/tex]
[tex]a_{cp}=436.6km/h^2[/tex]
Explanation:
The speed is the distance traveled divided by the time taken. The distance traveled in 24hs while standing on the equator is the circumference of the Earth [tex]C=2\pi R[/tex], where [tex]R=6371km[/tex] is the radius of the Earth.
We have then:
[tex]v=\frac{C}{t}=\frac{2\pi R}{t}=\frac{2\pi (6371km)}{(24h)}=1667.9km/h[/tex]
And then we use the centripetal acceleration formula:
[tex]a_{cp}=\frac{v^2}{R}=\frac{(1667.9km/h)^2}{(6371km)}=436.6km/h^2[/tex]