Respuesta :

Answer:

440

Step-by-step explanation:

5x8=40

40x11=440

Have a good day :P :P

ANSWER:

The area of the triangle with sides a=5, b=8 and c=11 is  [tex]4 \sqrt{21} \text { square units. }[/tex]

SOLUTION:

Given, a = 5, b = 8, c = 11.

We need to find the area of the triangle with sides as given.

Let us find the area of triangle using heron’s formula:

[tex]\begin{array}{l}{\text { Area }=\sqrt[2]{s(s-a)(s-b)(s-c)}} \\\\ {\text { Where } s=\frac{a+b+c}{2}}\end{array}[/tex]

Now, let us calculate value of s and put it in heron’s formula.

[tex]s=\frac{5+8+11}{2}=\frac{24}{2}=12[/tex]

Substitute s value in heron’s formula along with a, b, c values.

[tex]\begin{array}{l}{\text { Area }=\sqrt{12(12-5)(12-8)(12-11)}} \\ {=\sqrt{12(7)(4)(1)}} \\ {=\sqrt{4^{2} \times 3 \times 7}=4 \sqrt{21} \text { sq units. }}\end{array}[/tex]

Thus the area of the triangle with sides a=5, b=8 and c=11 is  [tex]4 \sqrt{21} \text { square units. }[/tex]

ACCESS MORE