Respuesta :
Answer:
440
Step-by-step explanation:
5x8=40
40x11=440
Have a good day :P :P
ANSWER:
The area of the triangle with sides a=5, b=8 and c=11 is [tex]4 \sqrt{21} \text { square units. }[/tex]
SOLUTION:
Given, a = 5, b = 8, c = 11.
We need to find the area of the triangle with sides as given.
Let us find the area of triangle using heron’s formula:
[tex]\begin{array}{l}{\text { Area }=\sqrt[2]{s(s-a)(s-b)(s-c)}} \\\\ {\text { Where } s=\frac{a+b+c}{2}}\end{array}[/tex]
Now, let us calculate value of s and put it in heron’s formula.
[tex]s=\frac{5+8+11}{2}=\frac{24}{2}=12[/tex]
Substitute s value in heron’s formula along with a, b, c values.
[tex]\begin{array}{l}{\text { Area }=\sqrt{12(12-5)(12-8)(12-11)}} \\ {=\sqrt{12(7)(4)(1)}} \\ {=\sqrt{4^{2} \times 3 \times 7}=4 \sqrt{21} \text { sq units. }}\end{array}[/tex]
Thus the area of the triangle with sides a=5, b=8 and c=11 is [tex]4 \sqrt{21} \text { square units. }[/tex]