Respuesta :
Answer:
1. x = 8
2. [tex]x=-\dfrac{3}{2}[/tex]
Step-by-step explanation:
1. Solve the rational equation
[tex]\dfrac{4x+3}{5}=\dfrac{8x-1}{9}[/tex]
First, cross multiply:
[tex]9(4x+3)=5(8x-1)[/tex]
Now, use distributive property:
[tex]36x+27=40x-5[/tex]
Separate terms with x and without x into different sides of equation:
[tex]36x-40x=-5-27[/tex]
Simplify:
[tex]-4x=-32[/tex]
Divide by -4:
[tex]x=8[/tex]
2. The rational function
[tex]f(x)=\dfrac{x-4}{2x+3}[/tex]
This rational function is undefined for all values of x, for which the denominator is equal to 0. Find these values:
[tex]2x+3=0\\ \\2x=-3\\ \\x=-\dfrac{3}{2}[/tex]
This means that the line [tex]x=-\dfrac{3}{2}[/tex] is a vertical asymptote for the rational function f(x).