The work done is [tex]2.8125 \times 10^{5} \mathrm{J}[/tex]
Work Done = Change in Kinetic Energy (ΔKE)
Explanation
In first 1 hour it travels 72 km
So, Velocity = [tex]\frac{\text { distance }}{\text { time }}=\frac{72}{1} k m / h=72 \mathrm{km} / \mathrm{h}=\frac{72000}{3600} \mathrm{m} / \mathrm{s}=20 \mathrm{m} / \mathrm{s}[/tex]
or, Initial Velocity (u) = 20 m/s
Similarly for the next hour it covers 90 km
So, Velocity = [tex]\frac{\text { distance }}{\text { time }}=\frac{90}{1} k m / h=90 \mathrm{km} / \mathrm{h}=\frac{90000}{3600} \mathrm{m} / \mathrm{s}=25 \mathrm{m} / \mathrm{s}[/tex]
or, Final Velocity (v) = 20 m/s
Work done = Change in Kinetic Energy (ΔKE)
Work done = ΔKE = [tex]\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}[/tex]
ΔKE = [tex]\frac{1}{2} m\left(v^{2}-u^{2}\right)=\frac{1}{2} \times\left(2.5 \times 10^{3}\right) \times\left(25^{2}-20^{2}\right)[/tex]
= [tex]\frac{2500 \times(625-400)}{2}=\frac{2500 \times 225}{2}=\frac{562500}{2}[/tex]= 281250 joule
= [tex]2.8125 \times 10^{5} \mathrm{J}[/tex]