a. The sample space for [tex](X,Y)[/tex] has 36 possible outcomes,
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), ...,
(3, 1), (3, 2), ...,
and so on.
b. In the array above, replace each coordinate pair with the absolute difference between the coordinates; you'd end up with an array like
0, 1, 2, 3, 4, 5,
1, 0, 1, 2, 3, 4,
2, 1, 0, 1, 2, 3,
3, 2, 1, 0, 1, 2,
4, 3, 2, 1, 0, 1,
5, 4, 3, 2, 1, 0
so that the sample space for [tex]Z[/tex] is the set of integers, {0, 1, 2, 3, 4, 5}.
c. The sample space above illustrates that
[tex]P(Z=z)=\begin{cases}\frac16&\text{for }z=0\\\frac5{18}&\text{for }z=1\\\frac29&\text{for }z=2\\\frac16&\text{for }z=3\\\frac19&\text{for }z=4\\\frac1{18}&\text{for }z=5\\0&\text{otherwise}\end{cases}[/tex]
so the expected value of [tex]Z[/tex] is
[tex]E[Z]=\displaystyle\sum_{z=0}^5z\,P(Z=z)=\frac06+\frac5{18}+\frac49+\frac12+\frac49+\frac5{18}=\boxed{\frac{35}{18}}[/tex]
d. Not sure what you mean by "tabular form", but you can obtain the CDF from the usual definition,
[tex]F_Z(z)=P(Z\le z)=\begin{cases}0&\text{for }z<0\\\frac16&\text{for }z<1\\\frac49&\text{for }z<2\\\frac23&\text{for }z<3\\\frac56&\text{for }z<4\\\frac{17}{18}&\text{for }z<5\\1&\text{for }z\ge5\end{cases}[/tex]