Respuesta :
Answer:
Part 1) x = 0 and x = two thirds
Part 2) x = −3; x = 0 is an extraneous solution
Part 3) (−∞, −3) ∪ (−3, ∞)
Step-by-step explanation:
Part 1) we have
[tex]\frac{x}{4}=\frac{x^{2}}{x+2}[/tex]
Solve for x
Multiply by 4(x+2) both sides to remove the fractions
[tex]x(x+2)=4x^2[/tex]
[tex]x^2+2x=4x^2\\3x^2-2x=0[/tex]
Solve the quadratic equation
Factor 3
[tex]3(x^2-(2/3)x)=0[/tex]
Complete the square
[tex]3(x^2-(2/3)x+4/36)=0+1/3[/tex]
Rewrite as perfect squares
[tex]3(x-(1/3))^2=1/3[/tex]
[tex](x-(1/3))^2=1/9[/tex]
square root both sides
[tex](x-(1/3))=(+/-)1/3[/tex]
[tex]x=(1/3)(+/-)1/3[/tex]
[tex]x=(1/3)(+)1/3=2/3[/tex]
[tex]x=(1/3)(-)1/3=0[/tex]
Part 2) we have
[tex]\frac{3}{x}=\frac{4x+3}{x^{2}}[/tex]
Multiply by x^2 both sides to remove fractions
[tex]3x=4x+3[/tex]
[tex]x=-3[/tex]
Part 3) we have
[tex]f(x)=\frac{x-1}{x+3}[/tex]
we know that
The denominator cannot be equal to zero
so
The value of x cannot be equal to -3
so
The domain of f(x) is all real numbers except the value of x=-3
therefore
(−∞, −3) ∪ (−3, ∞)