Respuesta :
Answer:
[tex]a= \frac{(m_{1} -m_{2} )*g}{m_{1} +m_{2} }[/tex]
[tex]T= \frac{m_{2}g(1+m_{1} -m_{2} ) }{m_{1}+m_{2} }[/tex]
Explanation:
We apply Newton's second law:
∑F = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Problem development
M1 free body diagram : Look at the attached graphic
∑F = m₁*a
W₁ -T= m₁*a
W₁ - m₁*a = T Equation 1
M2 free body diagram :Look at the attached graphic
∑F = m₂*a
T-W₂= m₂*a
W₂ + m₂*a = T Equation 2
Equation 1 = Equation 2
W₁ - m₁*a = W₂ + m₂*a
W₁ - W₂ = m₁*a + m₂*a
m₁*g -m₂*g = a* (m₁ + m₂)
a = (m₁*g -m₂*g) / (m₁ + m₂)
[tex]a= \frac{(m_{1} -m_{2} )*g}{m_{1} +m_{2} }[/tex]
Calculation of the tension in the rope (T)
We replace a in the equation 2
W₂ + m₂*a = T
W₂ + m₂*g*(m₁ -m₂) / (m₁ + m₂) = T
m₂*g + m₂*g*(m₁ -m₂) / (m₁ + m₂) = T
m₂*g( (1+ (m₁ -m₂)) / (m₁ + m₂) = T
m₂*g (1+m₁ -m₂) / (m₁ + m₂) = T
[tex]T= \frac{m_{2}g(1+m_{1} -m_{2} ) }{m_{1}+m_{2} }[/tex]
![Ver imagen valeriagonzalez0213](https://us-static.z-dn.net/files/d9e/6749450858a22e411071bc4c43537221.png)
The expression for the magnitude of the acceleration of the masses in Atwood's machine is [tex]a=\frac{(M_1 - M_2)g}{M_1+M_2}[/tex].
The expression for the tension of the rope in Atwood's machine is
[tex]T=\frac{2M_1M_2\,g}{M_1+M_2}[/tex]
Newton's Second Law of Motion
This problem can be analysed using a free-body diagram.
According to Newton's Second law of motion;
[tex]\sum F=ma[/tex]
Therefore, from the freebody diagram of first mass, we can write;
[tex]T-W=-M_1 \,a\\\\\implies T=M_1g-M_1a[/tex]
Also, from the freebody diagram of second mass, we can write;
[tex]T-W=M_2 \,a\\\\\implies T=M_2g+M_2a[/tex]
Equating the RHS of both the expressions, we get;
[tex]M_1g-M_1a=M_2g+M_2a\\\\M_1a+M_2a=M_1g-M_2g\\\\\implies a=\frac{(M_1 - M_2)g}{M_1+M_2}[/tex]
Now, substituting the value of 'a' in any of the above net force expressions, we get;
[tex]T=M_2 g + M_2\frac{(M_1 - M_2)g}{M_1+M_2}=\frac{M_1M_2 g+M_2M_2g+M_1M_2 g-M_2M_2g}{M_1+M_2}[/tex]
[tex]\implies T=\frac{2M_1M_2\,g}{M_1+M_2}[/tex]
Learn more about Newton's second law of motion here:
https://brainly.com/question/15008403
![Ver imagen pristina](https://us-static.z-dn.net/files/d22/09e28df3ac7ac2f02463c05471fe9ec3.png)