Respuesta :
Answer:
Sum of the roots of the polynomial [tex]x^{3}+2 x^{2}-11 x-12 \text { is }-2[/tex]
Solution:
The general form of cubic polynomial is [tex]a x^{3}+b x^{2}+c x+d=0[/tex] ---- (1)
If we have any cubic polynomial [tex]a x^{3}+b x^{2}+c x+d=0[/tex] having roots [tex]\alpha , \beta , \theta[/tex]
Sum of roots [tex]\alpha + \beta + \theta[/tex] = [tex]\frac{-b}{a}[/tex] ---(2)
From question given that,
[tex]x^{3}+2 x^{2}-11 x-12[/tex] --- (3)
On comparing equation (1) and (3), we get a = 1, b = 2, c = -11 and d = -12
Hence the sum of roots using eqn 2 is given as,
= [tex]\frac{-2}{1}[/tex]
= -2
Hence the sum of the roots of the polynomial [tex]x^{3}+2 x^{2}-11 x-12 \text { is }-2[/tex]