Respuesta :
Answer:
a) [tex]= 1.0112 a_{n-1}[/tex]
b) [tex]= 7.6 . 1.0112^n [/tex]
c) [tex]a_{33} = 10.97 billion[/tex]
Step-by-step explanation:
Given data:
Population in 2017 was 7.6 billion
r = 1.12%
a) population after n year 2017
It is given each year population rise at a rate of 1.12% Thus we have
[tex]a_n = a_{n-1} + 1.12%.a_{n-1}[/tex]
[tex]= a_{n-1} + 0.0112 a_{n-1}[/tex]
[tex]= 1.0112 a_{n-1}[/tex]
b) [tex] a_{n} = 1.0112 a_{n-1}[/tex]
[tex] a_{n} = 1.0112 a_{n-1} = 1.011 ^1 a_{n-1}[/tex]
[tex] a_{n} = 1.0112 a_{n-2} = 1.011 ^2 a_{n-2}[/tex]
[tex] a_{n} = 1.0112 a_{n-3} = 1.011 ^3 a_{n-3}[/tex]
....
[tex] = 1.0112^n a_{n-n}[/tex]
[tex]= 1.0112^n a_{0}[/tex]
[tex]= 7.6 . 1.0112^n [/tex]
c) for n = 33 year ( 2050- 2017 = 33 year)
[tex]a_{33} = 7.6 \times 1.0112^33[/tex]
[tex]a_{33} = 10.97 billion[/tex]
Answer:
Answered
Step-by-step explanation:
[tex]a_0= 736 billion[/tex]
r= 1.12%= 0.0112
a) let a_n represents population n years after 2017
each year population grows by 1.12 %. Thus the population is the population of the previous year multiplied by a factor of 1.12%.
that is
[tex]a_n =a_{n-1} +1.0112a_{n-1}[/tex]
[tex]a_n =1.0112a_{n-1}[/tex]
b) given [tex]a_n =1.0112a_{n-1}[/tex]
[tex]a_0= 736 billion[/tex]
we successively apply the recurrence relation:
a_n= 1.0112a_n-1 = 1.0112^1a_n-1
[tex]1.0112(1.0112a^{n-2})= 1.0112^2 a_{n-2}[/tex]
[tex]1.0112^2(1.0112a^{n-3})= 1.0112^3 a_{n-3}[/tex]
[tex]1.0112^3(1.0112a^{n-4})= 1.0112^4 a_{n-4}[/tex]
.......................
=1.0112^na_n-n
=7.6×1.0112^n
c) the population of the world be in 2050
n=33 years
=7.6×1.0112^33
=10.975 billion