Assume that the population of the world in 2017 was 7.6 billion and is growing at the rate of 1.12% a year. a) Set up a recurrence relation for the population of the Links world n years after 2017. b) Find an explicit formula for the population of the world n years after 2017. c) What will the population of the world be in 2050?

Respuesta :

Answer:

a)         [tex]= 1.0112 a_{n-1}[/tex]

b)         [tex]= 7.6 . 1.0112^n [/tex]

c) [tex]a_{33} = 10.97 billion[/tex]

Step-by-step explanation:

Given data:

Population in 2017 was 7.6 billion

r = 1.12%

a) population after n year 2017

It is given each year population rise at a rate of 1.12% Thus we have

[tex]a_n = a_{n-1} + 1.12%.a_{n-1}[/tex]

       [tex]= a_{n-1} + 0.0112 a_{n-1}[/tex]

       [tex]= 1.0112 a_{n-1}[/tex]

b) [tex] a_{n}  = 1.0112 a_{n-1}[/tex]

   [tex] a_{n}  = 1.0112 a_{n-1} = 1.011 ^1 a_{n-1}[/tex]

   [tex] a_{n}  = 1.0112 a_{n-2} = 1.011 ^2 a_{n-2}[/tex]

   [tex] a_{n}  = 1.0112 a_{n-3} = 1.011 ^3 a_{n-3}[/tex]

      ....

     [tex] = 1.0112^n a_{n-n}[/tex]

      [tex]= 1.0112^n a_{0}[/tex]

      [tex]= 7.6 . 1.0112^n [/tex]

c)  for n = 33 year ( 2050- 2017 = 33 year)

        [tex]a_{33} = 7.6 \times 1.0112^33[/tex]

[tex]a_{33} = 10.97 billion[/tex]

Answer:

Answered

Step-by-step explanation:

  [tex]a_0= 736 billion[/tex]

    r=    1.12%=   0.0112

a) let a_n represents population n years after 2017

each year population grows by 1.12 %. Thus the population is the population of the previous year multiplied by a factor of 1.12%.

that is

[tex]a_n =a_{n-1} +1.0112a_{n-1}[/tex]

[tex]a_n =1.0112a_{n-1}[/tex]

b) given [tex]a_n =1.0112a_{n-1}[/tex]

[tex]a_0= 736 billion[/tex]

we successively apply the recurrence relation:

a_n= 1.0112a_n-1 = 1.0112^1a_n-1

[tex]1.0112(1.0112a^{n-2})= 1.0112^2 a_{n-2}[/tex]

[tex]1.0112^2(1.0112a^{n-3})= 1.0112^3 a_{n-3}[/tex]

[tex]1.0112^3(1.0112a^{n-4})= 1.0112^4 a_{n-4}[/tex]

.......................

=1.0112^na_n-n

=7.6×1.0112^n

c) the population of the world be in 2050

n=33 years

=7.6×1.0112^33

=10.975 billion