Answer:
In order to hit the same point with the second ball, you should throw it at an angle of 18° above the horizontal.
Explanation:
Horizontal reach formula for projectiles tells us
[tex]d=\frac{v_i^2\sin(2\theta)}{g},[/tex]
where [tex]v_i[/tex] is the initial velocity and [tex]\theta[/tex] the angle above the horizontal.
Since for both shots the reach must be the same, we have
[tex]\frac{v_i^2\sin(2\theta_1)}{g}=\frac{v_i^2\sin(2\theta_2)}{g}\\\sin(2\theta_1)=\sin(2\theta_2)\\\theta_2=\frac{1}{2}\arcsin(\sin(2\theta_1))=\frac{1}{2}\arcsin(\sin(2\times 72\deg))=\mathbf{18\deg}[/tex].