Answer:
304.86 metres
Explanation:
The x and y cordinates are [tex]dcos\theta[/tex] and [tex]dsin\theta[/tex] respectively
The horizontal distance travelled, [tex]x=v_{ox}t=dcos\theta[/tex]
Making t the subject, [tex]t=\frac{dcos\theta}{v_{ox}}[/tex]
Since [tex]y=0.5gt^2=dsin\theta[/tex], we substitute t with the above and obtain
[tex]0.5g(\frac{dcos\theta}{v_{ox}})^2=dsin\theta[/tex]
Making d the subject we obtain
[tex]d=\frac{2v_{ox}^2sin\theta}{gcos^2\theta}[/tex]
[tex]d=\frac{2*30^2sin48}{9.8cos^248}[/tex]
d=304.8584
d=304.86m