1. Let f(x, y) be a differentiable function in the variables x and y. Let r and θ the polar coordinates,and set g(r, θ) = f(r cos θ, r sin θ) in other words g is f in terms of polar coordinates. Suppose that it is known that fx(1, 1) = −2 and fy(1, 1) = 3 Use the chain rule in order to compute the partial derivative gr( √ 2, π/4).

Respuesta :

Answer:

[tex]g_{r}(\sqrt{2},\frac{\pi}{4})=\frac{\sqrt{2}}{2}\\[/tex]

Step-by-step explanation:

First, notice that:

[tex]g(\sqrt{2},\frac{\pi}{4})=f(\sqrt{2}cos(\frac{\pi}{4}),\sqrt{2}sin(\frac{\pi}{4}))\\[/tex]

[tex]g(\sqrt{2},\frac{\pi}{4})=f(\sqrt{2}(\frac{1}{\sqrt{2}}),\sqrt{2}(\frac{1}{\sqrt{2}}))\\[/tex]

[tex]g(\sqrt{2},\frac{\pi}{4})=f(1,1)\\[/tex]

We proceed to use the chain rule to find [tex]g_{r}(\sqrt{2},\frac{\pi}{4})[/tex] using the fact that [tex]X(r,\theta)=rcos(\theta)\ and\ Y(r,\theta)=rsin(\theta)[/tex] to find their derivatives:

[tex]g_{r}(r,\theta)=f_{r}(rcos(\theta),rsin(\theta))=f_{x}( rcos(\theta),rsin(\theta))\frac{\delta x}{\delta r}(r,\theta)+f_{y}(rcos(\theta),rsin(\theta))\frac{\delta y}{\delta r}(r,\theta)\\[/tex]

Because we know [tex]X(r,\theta)=rcos(\theta)\ and\ Y(r,\theta)=rsin(\theta)[/tex] then:

[tex]\frac{\delta x}{\delta r}=cos(\theta)\ and\ \frac{\delta y}{\delta r}=sin(\theta)[/tex]

We substitute in what we had:

[tex]g_{r}(r,\theta)=f_{x}( rcos(\theta),rsin(\theta))cos(\theta)+f_{y}(rcos(\theta),rsin(\theta))sin(\theta)[/tex]

Now we put in the values [tex]r=\sqrt{2}\ and\ \theta=\frac{\pi}{4}[/tex] in the formula:

[tex]g_{r}(\sqrt{2},\frac{\pi}{4})=f_{r}(1,1)=f_{x}(1,1)cos(\frac{\pi}{4})+f_{y}(1,1)sin(\frac{\pi}{4})[/tex]

Because of what we supposed:

[tex]g_{r}(\sqrt{2},\frac{\pi}{4})=f_{r}(1,1)=-2cos(\frac{\pi}{4})+3sin(\frac{\pi}{4})[/tex]

And we operate to discover that:

[tex]g_{r}(\sqrt{2},\frac{\pi}{4})=-2\frac{\sqrt{2}}{2}+3\frac{\sqrt{2}}{2}[/tex]

[tex]g_{r}(\sqrt{2},\frac{\pi}{4})=\frac{\sqrt{2}}{2}[/tex]

and this will be our answer

Otras preguntas